Status
(May 2016) The Gautieria morchelliformis GMNE.BST genome was sequenced using PacBio technology, assembled with Falcon, improved with finisherSC, polished with Quiver, and annotated with the JGI annotation pipeline. The Mitochondrial genome was sequenced using Illumina data and assembled with AllPathsLG, and is available in the download section.
Summary statistics for the Gautieria morchelliformis
GMNE.BST v1.0 release are below.
Genome Assembly | |
Genome Assembly size (Mbp) | 122.81 |
Sequencing read coverage depth | 67.9X |
# of contigs | 1220 |
# of scaffolds | 1220 |
# of scaffolds >= 2Kbp | 1213 |
Scaffold N50 | 200 |
Scaffold L50 (Mbp) | 0.18 |
# of gaps | 0 |
% of scaffold length in gaps | 0.0% |
Three largest Scaffolds (Mbp) | 0.73, 0.72, 0.71 |
ESTs | Data set | # sequences total | # mapped to genome | % mapped to genome |
EstClusters | ESTclusters | 65703 | 58685 | 89.3% |
Ests | est.fasta | 193302393 | 190934820 | 98.8% |
Gene Models | FilteredModels3 | |
length (bp) of: | average | median |
gene | 1480 | 1217 |
transcript | 1155 | 940 |
exon | 207 | 134 |
intron | 73 | 57 |
description: | ||
protein length (aa) | 328 | 250 |
exons per gene | 5.58 | 4 |
# of gene models | 20331 |
Collaborators
Pedro Crous, CBS-KNAW Fungal Biodiversity Centre
Joseph W. Spatafora, Oregon State University
Genome Reference(s)
Please cite the following publication(s) if you use the data from this genome in your research:
Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-GarcÃa M, Morin E, Andreopoulos B, Barry KW, Bonito G, Buée M, Carver A, Chen C, Cichocki N, Clum A, Culley D, Crous PW, Fauchery L, Girlanda M, Hayes RD, Kéri Z, LaButti K, Lipzen A, Lombard V, Magnuson J, Maillard F, Murat C, Nolan M, Ohm RA, Pangilinan J, Pereira MF, Perotto S, Peter M, Pfister S, Riley R, Sitrit Y, Stielow JB, SzöllÅ‘si G, ŽifÄáková L, Å tursová M, Spatafora JW, Tedersoo L, Vaario LM, Yamada A, Yan M, Wang P, Xu J, Bruns T, Baldrian P, Vilgalys R, Dunand C, Henrissat B, Grigoriev IV, Hibbett D, Nagy LG, Martin FM
Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits.
Nat Commun. 2020 Oct 12;11(1):5125. doi: 10.1038/s41467-020-18795-w
Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-GarcÃa M, Morin E, Andreopoulos B, Barry KW, Bonito G, Buée M, Carver A, Chen C, Cichocki N, Clum A, Culley D, Crous PW, Fauchery L, Girlanda M, Hayes RD, Kéri Z, LaButti K, Lipzen A, Lombard V, Magnuson J, Maillard F, Murat C, Nolan M, Ohm RA, Pangilinan J, Pereira MF, Perotto S, Peter M, Pfister S, Riley R, Sitrit Y, Stielow JB, SzöllÅ‘si G, ŽifÄáková L, Å tursová M, Spatafora JW, Tedersoo L, Vaario LM, Yamada A, Yan M, Wang P, Xu J, Bruns T, Baldrian P, Vilgalys R, Dunand C, Henrissat B, Grigoriev IV, Hibbett D, Nagy LG, Martin FM
Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits.
Nat Commun. 2020 Oct 12;11(1):5125. doi: 10.1038/s41467-020-18795-w
Funding
The work conducted by the U.S. Department of Energy Joint Genome
Institute, a DOE Office of Science User Facility, is supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.