Home • Morchella conifericola Mel-32 v1.0
Photo of Morchella conifericola Mel-32 v1.0
Figs 11–13. Morchella conifericola (Taskinn 477, holotype). 11. Ascocarp. 12. Clavate acroparaphyses on ridge. 13. SEM of ascospore with prominent longitudinal striae interconnected by delicate horizontal striae. Scale bars: 11 = 1 cm; 12 = 20 µm; 13 = 5 µm. [from Taskin et al. 2016 used under the Creative Commons Attributiuon-NC-ND 4.0 International License.]

In the "1KFG: Deep Sequencing of Ecologically-relevant Dikarya" project (CSP1974), we aim to sequence additional sampling of genomic diversity within keystone lineages of plant-interacting fungi and saprophytic fungi that are of special ecological importance for understanding terrestrial ecosystems. In addition, comparative genome analysis with saprotrophic, mycorrhizal and pathogenic fungi will provide new insights into the specific and conserved adaptations associated with each fungal lifestyle.

Within the framework of CSP1974, we are sequencing phylogenetically and morphologically diverse species of Morchellaceae. These fungi include economically important edible morels (Morchella), putatively toxic false-morels (Verpa), and the edible hypogeous truffle genera Leucangium and Kalapuya (1–3). The ecology of these taxa is still poorly understood. Some Morchella species are suspected to be mycorrhizal symbionts (4), others grow as endophytes within plant roots (5,6), some farm bacteria (7), but the majority of species (including the cultivated species of morels) are considered to be general saprotrophs (8,9). The Morchellaceae lineage is hypothesized to have originated and radiated in the Northern Hemisphere, later dispersing into Southern hemisphere regions (10). Genomic data generated by this project will be used to better identify genomic features underlying the distinct ecology, diversity, and morphology of Morchellaceae fungi.

Here we present the genome of Morchella conifericola, a species of black morel in the elata subclade (M. sect. Distantes) described in 2012, which corresponds to phylogenetic species Mel-32. This species is quite rare, and appears to be endemic to Turkey. Morchella conifericola has a similar morphology to M. magnispora (Mel-29), but can be distinguished by its stipe which lacks distinct wrinkles or folds. In addition, the ascospores of M. conifericola are smaller in size and are distinctly striate as observed by scanning electron microscopy. Morchella conifericola is found fruiting under Pinus nigra, Cedrus libani, and Abies cilicica in Turkey (11).

Researchers who wish to publish analyses using data from unpublished CSP genomes are respectfully required to contact the PI and JGI to avoid potential conflicts on data use and coordinate other publications with the CSP master paper(s).

 

References

  1. O’Donnell, K., Cigelnik, E., Weber, N. S. & Trappe, J. M. Phylogenetic Relationships among Ascomycetous Truffles and the True and False Morels Inferred from 18S and 28S Ribosomal DNA Sequence Analysis. Mycologia 89, 48–65 (1997).
  2. Gecan, J. S. & Cichowicz, S. M. Toxic Mushroom Contamination of Wild Mushrooms in Commercial Distribution. J. Food Prot. 56, 730–734 (1993).
  3. Trappe, M. J., Trappe, J. & Bonito, G. Kalapuya brunnea gen. & sp. nov. and its relationship to the other sequestrate genera in Morchellaceae. Mycologia 102, 1058–1065 (2010).
  4. Buscot, F. Mycorrhizal succession and morel biology. Mycorrhizas in ecosystems 220–224 (1992).
  5. Masaphy, S., Zabari, L., Goldberg, D. & Jander-Shagug, G. The complexity of Morchella systematics: a case of the yellow morel from Israel. Fungi 3, 14–18 (2010).
  6. Baynes, M., Newcombe, G., Dixon, L., Castlebury, L. & O’Donnell, K. A novel plant–fungal mutualism associated with fire. Fungal Biol. 116, 133–144 (2012).
  7. Pion, M., Spangenberg, J. E., Simon, A., Bindschedler, S., Flury, C., Chatelain, A., Bshary, R., Job, D. & Junier, P. Bacterial farming by the fungus Morchella crassipes. Proc. Biol. Sci. 280, 20132242 (2013).
  8. Benucci, G. M. N., Longley, R., Zhang, P., Zhao, Q., Bonito, G. & Yu, F. Microbial communities associated with the black morel Morchella sextelata cultivated in greenhouses. PeerJ 7, e7744 (2019).
  9. Hobbie, E. A., Rice, S. F., Weber, N. S. & Smith, J. E. Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska. Mycologia 108, 638–645 (2016).
  10. O’Donnell, K., Rooney, A. P., Mills, G. L., Kuo, M., Weber, N. S. & Rehner, S. A. Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genet. Biol. 48, 252–265 (2011).
  11. Taskin, H., Dogan, H.H., Buyukalaca, S., Clowez, P., Moreau, P.-A., O'Donnell, K. 2016. Four new morel (Morchella) species in the elata subclade (M. sect. Distantes) from Turkey. Mycotaxon 131(2), 467–482 (2016).